
Studying the Effects of “Prevent Defense” Tactic on Team’s
Offensive Output Across Five Major European Club Soccer

Leagues

Abstract

Having looked at the full match statistics for the England-France 2022 FIFA World Cup Quar-
terfinal, one could come away thinking ”England lost despite having played better than France”:
16 to 8 shot attempts, 5 corners to France’s 2, resulting in a 1-2 loss. What’s disregarded is the
scoring context: in the 40 minutes when the match was tied (0-0, 1-1), France actually led in
those statistical categories, while consciously ceding initiative to England in the 66 minutes when
up a goal in order in order to protect the lead (we’ll call it ”prevent defense”). We use sequenced
match event data across five European club leagues over the past 15 years to study impacts of
prevent defense on teams’ offensive outputs when trailing, leading or tied. For that, we leverage
non-linear modeling approaches tailored towards count response data, with predictors that are
hypothesized to affect the likelihood of implementing defensive tactics.

Keywords. Count data, Generalized Additive Models, Negative Binomial, Poisson regression,
Smoothing Splines, Sports statistics
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1 Introduction

Soccer, also known as football, is one of the most popular sports in the world. According to the
International Federation of Association Football (French: Fédération Internationale de Football
Association), 5 billion people have engaged with the FIFA World Cup Qatar 2022 [3]. This ex-
citing sport has gained a huge following due to its thrilling gameplay and fast-paced action. In
soccer, statistics play a crucial role across various aspects of the game, from player performance
evaluation to strategic analysis. Detailed statistical breakdowns of matches provide valuable in-
sights into team dynamics, possession percentages, shot accuracy, passing accuracy, and other key
performance indicators. This analysis helps teams identify areas for improvement and refine their
playing style. Similarly, teams use statistical data to analyze opponents’ playing styles, strengths,
and weaknesses. This analysis helps in devising effective game plans and strategies to exploit the
opponent’s vulnerabilities while minimizing risks.

Data without context can often lead to misinterpretation. For instance, upon analyzing the match
statistics of the 2022 FIFA World Cup Quarterfinal between England and France, one might er-
roneously conclude that “England lost despite being the better team” based on 16 to 8 shot at-
tempts, 8 to 5 shots on target, 5 corners to France’s 2, resulting in a 1-2 loss [2]. However, the
metrics derived from this simple count of shots and corners disregards the score situation: in the
40 minutes when the match was tied (0-0, 1-1), France led in all of the mentioned statistical cate-
gories, while consciously ceding initiative to England in the 66 minutes when up a goal - a tactic
we will refer to as “prevent defense” (a term borrowed from American football). We used match
event sequencing data across the five major European leagues over the past 15 years, to study
the impacts of prevent defense on the aforementioned statistical categories and scoring tenden-
cies for teams if trailing or in the lead. To yield a more realistic picture of who might have been
the “better team”, in this work we aim to study the effects of factors that could impact the likeli-
hood of implementing the prevent defense tactics on team’s offensive outputs such as the number
of shot attempts and corners. These factors include things like the score and red card differen-
tial for a specific time period (ScoreDiff and RedCardDiff), the length of said time period
(timeSpent), the team designation as either Home or Away (H.A). In addition to these vari-
ables, pre-match betting coefficients are collected to gauge how evenly matched the two teams
are, which we hypothesize to also contribute to the chances of a team pursuing the prevent de-
fense approach. Inspecting the shots and corners that teams accumulate while accounting for the
aforementioned factors could help get a more objective picture of the balance of power within a
game, in order to dispel the notion of “Team X was better statistically and still lost” whenever
it’s not the reality.

Our end goal is to study the nature of the relationship between the aforementioned factors and
teams’ offensive production, thereby enhancing our understanding of soccer statistics.

1.1 Previous Research

There are existing metrics and approaches in soccer performance analysis that encompass a range
of methodologies aimed at comprehensively understanding team dynamics and individual con-
tributions within the game. Expected Goal (xG) models have emerged as a cornerstone in mod-
ern soccer analytics [18] [13]. These models assess the probability of a shot resulting in a goal
based on various factors such as shot location, angle, distance, and type. By assigning a numer-
ical value to the quality of scoring chances, xG models provide a quantitative measure for the
quality of shots and opportunities a team generates.
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Besides pure shot characteristics, some models used other factors such as proxies to quantify psy-
chological effects, like match attendance, match importance and goal differential [13]. Mead et
al. suggest that psychological pressure may influence the likelihood of scoring goals. Additionally,
the study indicates that goal differential was among the most influential variables considered in
the expected goals models. With that said, the exact nature of the effect wasn’t studied in detail
due to overly complex models with low interpretability (”black box” models).

In another study, based on feature importance analysis, every player’s upcoming scoring perfor-
mance is strongly associated with previous season’s goals (Gls) and expected goals (xG) [8].

1.2 Research Question

This paper aims to address the limitations of traditional soccer match statistics by providing con-
text through the analysis of match event sequencing data by studying the impacts of “prevent
defense” tactics on various statistical categories and scoring tendencies, the research seeks to en-
hance the understanding of soccer match dynamics and outcomes. In statistical terms, the de-
pendent variables of interest to us are shot attempts and corners, which we hypothesize to be
related to several factors affecting likelihood of prevent defense tactic implementation. In par-
ticular, we will study the effects of score differential, red card differential, time spent at said
score and red card differential, and weighted win probability (it is calculated based on the bet-
ting coefficients). The latter serves as a good proxy for relative strengths of the team, and our
intuition for including it is that if a dominant team plays an underdog, we do not expect to see
the dominant team play prevent defense no matter what the score differential is. Instead, they
will keep scoring and playing aggressively against an easy opponent. We will leverage multiple
regression with the aforementioned covariates as predictors, while corners or shots would act as
the response variable. That way, we aim to isolate the true relationship between the independent
factors (score and red card differential, betting coefficients) and dependent variables (shots, cor-
ners).

Although work has been done on modeling the goal expectations based on a variety of factors, in-
cluding current score differential, our work focuses on other statistical categories such as shots
and corners. Moreover, we emphasize interpretability of the results, avoiding overly complex,
”black box”, types of models and algorithms.

2 Methods

2.1 Data Preparation

2.1.1 Data Sources

Our primary data sources are ESPN.com (”ESPN” stands for Entertainment and Sports Pro-
gramming Network) and Oddsportal.com websites. We utilized JavaScript to web scrape sequen-
tial data from ESPN.com, collecting information from games in the major five European leagues
(English Premier League, Spanish La Liga, German Bundesliga, French Ligue 1, and Italian Serie
A) over the last 15 years. Web scraping is the process of extracting data from websites which in-
volves writing code to programmatically access a webpage, retrieve its HTML content, and then
parse that content to extract the desired information. Due to non-trivial URL naming conven-
tions of ESPN.com, we had to use extra care when developing the coding script to systemati-
cally pull relevant games from respective leagues and seasons. In particular, we had to identify
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correct ranges of game identifiers (”game IDs”) by trial-and-error combined with leveraging the
knowledge of total number of games in each league, as the URL didn’t contain any other indica-
tors of the league or season. Using those techniques, we gathered a massive dataset that includes
detailed game commentary on minute-by-minute events, cumulative game statistics such as fouls,
corners, yellow cards, red cards, shots on goal, shot attempts, saves, goal times, and final scores.
For the example of game commentary webpage format from ESPN.com, refer to Figure 1

Figure 1: Example of game commentary from ESPN.com for the England-France Quarterfinal
match of FIFA 2022 World Cup

Additionally, we scraped betting coefficients from Oddsportal.com for the same time frame and
leagues to mitigate potential confounding effect arising from team-level differences. Betting co-
efficients are a good proxy for team strength as they are calculated using a combination of sta-
tistical analysis, historical data, the current outlook of a team (recent performance, injuries to
key players), expert opinion, and market demand. Teams with stronger squads and a history of
success are often favored over weaker opponents. Home-field advantage is a significant factor in
sports, including soccer. Another important factor is that of home field advantage - teams play-
ing at their home stadium often have better odds due to the support of their fans and familiarity
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with the playing environment. The dataset of betting coefficients contains team names, the bet-
ting coefficients (for three outcomes: home team win, draw, away team win), and game dates.
For the example of webpage format from Oddsportal.com, refer to Figure 2.

Figure 2: Example of betting coefficients data from Oddsportal.com for English Premier League,
Season of 2021/2022. Column ”1” corresponds to home team win, ”X” - draw, ”2” - away team
win. The ”B’s” column contains the number of booking agencies across which the betting data
was aggregated.

The data was merged from these two sources, requiring us to use game dates and the names of
the home and away teams for each match to align with the odds data. However, a significant
challenge was the dynamic nature of Oddsportal.com, rendering traditional HTTP requests in-
effective for scraping purposes, as they cannot interpret JavaScript. Another challenge was that
the layout of the Oddsportal.com web page underwent multiple changes in terms of layout of el-
ements, thereby hindering the consistent execution of the script across all leagues. Therefore, we
used the browser automation library Selenium [5], which provides specialized methods tailored
for web scraping dynamic content from dynamic websites like Oddsportal.com. Selenium is a
web automation framework that allows you to programmatically control web browsers. You can
open a browser window, navigate to different web pages, interact with page elements by clicking
buttons, filling forms, and extract data from web pages.
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2.1.2 Data Preprocessing

We performed preprocessing for all of the leagues that consisted of 11 parts. For a thorough lay-
out of our preprocessing pipeline see Figure 3. Preprocessing was a challenging aspect of this
project since the data obtained via web scraping from two sources (ESPN.com and Oddsportal,
as described in Section 2.1.1) was largely unstructured, especially the text commentary data from
ESPN.com which initially came in JSON format with free-form data entry text fields.

Extensive coding and testing was necessary to transform the unstructured data into a cleaner
format containing the quantities of interest. We heavily utilized the Pandas [4] and CSV [1] li-
braries in Python for this project. With Pandas, you can perform various data manipulation
tasks, such as loading, cleaning, transforming, aggregating, and analyzing data, making it an es-
sential tool for working with structured data in Python. The CSV library in Python allows you
to easily handle CSV files by providing functions to read data from CSV files into Python data
structures like lists or dictionaries, as well as functions to write data from Python data structures
back to CSV files.

Below we describe the steps in detail. First, the preprocessing pipeline starts by combining the
JSON files of the ESPN game commentary and game statistics for a league. The second script
converts the combined JSON to CSV format to render the data in a tabular and easily accessible
manner. Also, the file’s encoding was changed to ASCII, resulting in accented letters being ren-
dered as unreadable characters. We lose the special accent letters, but this will not impact our
analysis. The third script segments the commentary by minute (initially, the entire game’s text
commentary was just one huge text entry), appending the corresponding date to each minute en-
try. We utilized regex to manage the stoppage time added at the end of each half. The extracted
minute format includes a plus sign, such as 45+1. We split the minute string at the plus sign,
converting each part to an integer, then combined them by adding the second part divided by
100. Thus, 45+1 becomes 45.01, and 45+10 becomes 45.1. Additionally, we filtered out games
with missing data for game commentary and game statistics columns and addressed any repeti-
tive game IDs (gameID).

The fourth script takes two files as inputs: 1) the JSON file that contains the box score (the fi-
nal score of the games and the goal minutes); 2) The output of the third script which consists
of gameId, minute, commentary, the names of home and away teams, and the date of the game.
We find the event that has a goal by string matching, and subsequently comparing the minute of
the event to the goal minutes from the box score. This results in a robust approach to initializing
the homeScore and awayScore for each scoring event.

The fifth script is designed to filter games with more than two team names and games featur-
ing incorrect minute stamps for given events, often stemming from erroneous data input on the
ESPN.com website. For instance, discrepancies arise when the game title and commentary fail
to align, or faulty entries within the commentary indicate “Match ends” at the start of the first
half with a time stamp of 90. After resolving that problem, we observed that the starting minute
of events does not consistently begin at 0. Therefore, if the first event of a game occurs at, say,
minute 3, it appears to be the initial event, neglecting the preceding 3 minutes, which would af-
fect the calculations of minutes spent at a given score and red card differential. To rectify this,
we appended “First Half begins.” to each game’s minute 0. Additionally, we made sure to update
the score differential starting from the row subsequent to the actual goal, because otherwise the
shot that led to the goal would’ve counted towards the updated score differential, as opposed to
the previous one during which it actually took place.
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Figure 3: An image of data pipeline diagram
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The sixth script employs regular expressions (Regex) and text processing techniques to classify
offensive events based on game commentary, with the assistance of the Levenshtein distance al-
gorithm. The commentary comprises a substantial portion of a text, and our task involves clas-
sifying whether the event described in a given minute falls into one of our interested categories.
Regex is a sequence of characters that helps one to match and manipulate certain text arbitrary
text patterns of interest. Here are a few examples of how we utilized Regex in this project: locat-
ing instances of minutes followed by events, identifying team names occurring after commas but
not enclosed in parentheses, extracting integers from strings representing goals, and so forth. We
identified some patterns by analyzing the commentary, which we subsequently employed in text
processing. To detect goals, we searched for occurrences of the word “goal” within the commen-
tary while excluding instances such as “GOAL OVERTURNED” and “GOAL CANCELLED”.
For shot attempts, we searched for keywords “Attempt blocked”, “Attempt missed”, “Penalty
missed”, and “post”. Red cards were identified through the presence of either a “red card” or a
“Second yellow card”. Saves were identified by the occurrence of “Attempt saved”. Additionally,
we identified occurrences of “own goal”, “Foul”, “Corner”, “yellow card”, “free kick”, and “off-
side” by specifically searching for these keywords. When analyzing most of the aforementioned
statistical categories, the team responsible for the event is enclosed in parentheses in the com-
mentary (e.g. ”Foul by Raffael (Hertha Berlin)”, or ”Attempt blocked. Marcel Schäfer (Wolfs-
burg) left footed shot...”). However, in the case of own goals, corners, and offsides, the team name
follows the comma rather than being enclosed in parentheses (e.g. ”Corner, Wolfsburg. Conceded
by Jaroslav Drobny.”). Upon identifying such events, we extracted the team name from within
the parentheses or after commas, respectively, and compared it with the listed team names us-
ing a matching algorithm according to the Levenshtein distance [14]. The Levenshtein edit dis-
tance is measure the similarity between two strings which calculates the minimum number of
single character edits (insertions, deletions, or substitutions) required to change one string into
the other. Within this project’s scope, the Levenshtein distance serves to match a team name
with the most similar counterpart from a list of scraped team names on top of ESPN for each
game. This step holds significance due to variations such as letter conversion to ASCII and oc-
casional discrepancies in team names, even when special accent characters are not present. For
instance, while the commentary may mention ”1899 Hoffenheim”, the team name in the list may
appear as ”TSG Hoffenheim”. Similarly, ”1. FC Köln” in the commentary might correspond to
”FC Cologne” in the team name list. The utilization of this algorithm effectively mitigates such
discrepancies.

The seventh script corrects out-of-order minutes. We observed that ESPN has data input er-
rors for some games, such as listing minute 47 after minute 50, which impacts our analysis. The
eighth script shifts the home and away score by 1 as we need to adjust the indexing of goals be-
cause, despite intervals changing with each goal, we aim to incorporate the goal minute as part of
the preceding interval, treating it as the interval’s final event.

The ninth script computes the score differentials (scoreDiff), red card differentials (RedCardDiff),
and timeSpent along with offensive outputs accumulated during a given score and red card dif-
ferential within the game. Each offensive output is recorded in separate columns, such as home-
Shots and awayShots, with the table presented in wide format.

The tenth script takes two inputs. The first is a file containing matched betting coefficients and
team names, which we match with ESPN team names to Oddsportal team names using the Lev-
enshtein algorithm. The second input is the output from the previous script. We standardize the
date in these two files and merge them based on the date, and matched home and away teams.
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In addition, we calculate the Weighted.Win.Probability using the betting coefficients, more de-
tails on that calculation are provided later in this section.Finally, the last script transforms the
format of the final table from wide to long. For instance, we now possess an extra column desig-
nating either home or away, along with a single column for Shots.

For the final data format that was utilized during statistical modeling, see Figure 4. The first
two rows represent the statistics accumulated by home and away team, respectively, whenever
their game (gameId = 252449) was tied (Score.Diff = 0 for both teams) and neither team
had a red card (RedCard.Diff = 0). One can see that teams spent 58 minutes in that set-
ting, during which the home team took 12 shots and 3 corners, while away team got 2 shots and
2 corners. Rows 3 and 4 correspond to the statistics accumulated by those teams in that same
game, but during the 10 minutes when the home team had a 1-goal lead (notice Score.Diff = 1
for home team, Score.Diff = −1 for away team). Lastly, rows 5-8 describe the time period
when the home team led by 2 goals (Score.Diff = 2 for home team, = −2 for away team),
but 10 minutes into this period there was a red card shown to the away team, resulting in away
team playing with fewer men for the remaining 12 minutes (RedCard.Diff = 1 for away team,
RedCard.Diff = −1 for home team).

Figure 4: Finalized data format used for statistical modeling

One variable we are yet to thoroughly describe is the weighted win probability (Weighted.Win.Prob).
It was calculated based on prematch betting coefficients via converting those to probabilities of
various game outcomes (home win, draw, away win) and assigning respective weights (+1 for
probability of the team winning, 0 for draw, -1 for probability of a loss). For example, the bet-
ting coefficients for the game 252449 from Figure 4 - which took place between Hoffenheim and
Koln in 2009 Bundesliga, with Hoffenheim as the home team - the betting coefficients were 1.87
for a home team win (meaning that one would win 1.87 times the amount they bet on that out-
come), 3.5 for a draw, 4.22 for an away team win. The formula for betting coefficient for out-
come A is 1

P (A) , hence the actual outcome probability is simply the reverse of that, making the

probability of home team win 1
1.87 = 0.53, draw - 1

3.5 = 0.29, away team win 1
4.22 = 0.24. Note

that those don’t add up to 1.0 because the betting coefficient reported for each outcome is a re-
sult of finding the best odds for said outcome across several bookmaking companies, which can
differ to a certain degree. To obtain the weighted win probability of home team (in our case,
Hoffenheim), we proceed to calculate a weighted sum of those probabilities as follows: (+1) ×
P (home team win)+0×P (draw)+(−1)×P (away team win) = (+1)×0.53+0×0.29+(−1)×0.24 =
0.29. For the away team weighted win probability, given that the weights of outcome probabili-
ties simply flip signs (it becomes ”-1” for home team win, ”+1” for away team win), we simply
take the negative of that: −0.29. This way, weighted win probabilities close to 0 indicate a game
between teams that are relatively closely matched in level, and a lopsided balance of power other-
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wise (being strongly positive for the favorite and strongly negative for the underdog, respectively)

All-in-all, instead of simply analyzing the game totals (e.g. total shots in a game, total corners,
etc), we break matches down into multiple intervals based on score and red card differential at
the time, and examine the team’s offensive output during each of these segments. Moreover, we
account for teams’ balance of power that helps gauge the likelihood of implementing a defensive
tactic. The aforementioned aspects result in our approach acknowledging the fluidity of play and
the evolving tactics employed by teams and individual players over the course of the match.

2.2 Statistical Modeling

2.2.1 Generalized Linear Models

Generalized Linear Models (GLMs) present an extension to classic linear models, where a special
treatment might be developed for cases of non-continuous response variables. Each generalized
linear model consists of three components: the random component, the systematic component,
and the link function. Additionally, each generalized linear model uses a predictor X or vector
of predictors X⃗ to predict a response variable Y . The random component defines the conditional
probability distribution of the response variable Y given a predictor X or vector of predictors
X⃗. The systematic component describes the relationship between the predictor and the expected
value of the response variable. The systematic component is often written as η = Xβ where η
is the linear predictor, X is the design matrix of predictors, and β is the vector of coefficients,
resulting in a linear function of predictors with β acting as weights. The link function, known
as g(.), connects the systematic and random components as follows: g(E[Y ]) = η, where E[Y ]
denotes the expected response value of the response (E[Y ]) [16, p. 170].

2.2.2 Poisson GLM

Poisson regression provides a more suitable framework for count data as it explicitly accounts
for key characteristics of the response, such as its discreteness and non-negativity. Poisson distri-
bution is a discrete probability distribution, intended for random variables that describe counts
of a certain event occurring either over a fixed interval of time, making it perfect for our setting
where we model the number of shots or corners during a fixed period of time. Suppose that we
have a random variable Y that we know takes on non-negative integer values. If Y follows the
Poisson distribution with rate µ, denoted as Y ∼ Pois(µ), then

P (Y = k) =
e−µµk

k!
for k = 0,1,2...

The initial full GLM Poisson regression model equation considered in this work is:

{
Yi ∼ind. Pois(µi)

log(µi) = α+ log(timeSpenti + 1) + β1ScoreDiffi + β2RedCardDiffi + β3Weighted.Win.Prob. + β4H.Ai

The log(timeSpenti + 1) component represents the offset variable, which directly translated into
modeling a per-minute event rate, e.g. shots or corners per minute. It is shifted by 1 to avoid the
cases of log(0) when the period lasts 0 minutes (although such cases are really rare).
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2.2.3 Overdispersion and Underdispersion

If Y ∼ Pois(µ), the following properties hold: E[X] = µ and V [Y ] = µ. The V [Y ] = µ ≡ E[Y ]
property shows how restrictive the Poisson distribution is as opposed to, for example, normal dis-
tribution (where V [Y ] is defined via a separate parameter σ2, unrelated to the mean E[Y ] = µ).
This restrictive nature of Poisson may lead to issues of overdispersion, which occurs when the
variance of the response variable is greater than its mean (V [Y ] > µ) , and, less frequently, un-
derdispersion (V [X] < µ), which occurs when the variance of the response variable is less than its
mean [11].

2.2.4 Negative Binomial GLM

The Negative Binomial distribution is commonly used to model count data with overdispersion.
We suppose that Yi follows the Poisson distribution and that its expected count µ∗

i is a Gamma-
distributed and unobservable random variable with mean µi and a constant scale parameter ω.
The setup for such negative binomial model is as follows [7, p. 432-433]:


Yi ∼ Pois(µ∗

i ), i = 1, 2, ..., n

µ∗
i ∼ Gamma(µi, ω)

log(µi) = α+ β1xi,1 + ...+ βkxi,k

We can write the negative binomial random component in shorthand as Yi ∼ NegBin(µi, ω)
where NegBin(µi, ω) is the marginal distribution of Yi that we receive from the specification of
distribution in the above equation.

The negative binomial model specified as above has expected value E[Yi] = µi and variance

V [Yi] = µi +
µ2
i
ω . Since ω is restricted to values greater than 0, looking at the variance formula

reveals that the negative binomial model type accounts for overdispersion. The negative binomial
assumes that the variance is greater than the mean therefore it is only appropriate for modeling
overdispersion and not for underdispersion.

2.2.5 Nonlinear Modeling Techniques

Unlike linear models, which assume a linear relationship between the independent and dependent
variables, non-linear models allow for more complex relationships to be captured. Linear models
assume that changes in the independent variable lead to proportional changes in the dependent
variable, while non-linear models allow for more flexibility in capturing the relationship between
variables. Non-linear models can take various forms, such as exponential, logarithmic, polyno-
mial, sigmoidal, or other non-linear functions. The key difference between linear and non-linear
models lies in the nature of the relationship they describe. In this work, we will focus on general-
ized additive models, which in their turn leverage smoothing splines [9].

2.2.6 Smoothing Splines

Splines are a flexible class of functions used for modeling potentially non-linear relationships
between variables. Splines are made up of piecewise polynomial functions that are joined to-
gether at specific points called knots. These knots act as breakpoints where the polynomial seg-
ments are connected. Splines come in various forms, such as cubic splines, natural splines, and
B-splines. For instance, in the context of regression splines, it’s necessary to define a series of
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knots, generate a sequence of basis functions, and employ least squares to compute the spline
coefficients. Alternatively, a distinct methodology can be adopted with smoothing splines. For
our research, we will use smoothing splines, where the main goal is to find the function g that
minimizes

n∑
i=1

(yi − g(xi))
2 + λ

∫
g′′(t)2dt, (1)

where yi are the true response values. The
∑n

i=1(yi − g(xi))
2 part represents the classic sum of

squared error, while λ
∫
g′′(t)2 is the penalty being imposed on overly wiggly fits, thereby avoid-

ing overfitting and encouraging smoothness of the resulting function (hence the name ”smooth-
ing” splines). A smoothing spline ends up being simply a natural cubic spline with knots at every
unique value of xi.

2.2.7 Generalized Additive Models

Generalized Additive Models (GAMs) are a framework for extending multiple linear regression
such that we allow nonlinear relationships between each predictor and the response, summing to-
gether the contributions from each predictor. A generalized additive model is written as follows:
yi = β0 + f1(xi,1) + . . . + fk(xi,k) + ei where each fj for j = 1, 2, . . . , k is a smooth nonlinear
function [16, p. 309-310]. Any smooth nonlinear function technique can be used to fit a function
fj , including the smoothing splines we discussed above, which is what we are going to use.

Generalized additive models offer several advantages over traditional linear models, especially
when dealing with complex relationships and non-linearities in the data. First, they fit a nonlin-
ear fj to each Xj , they will automatically model nonlinear relationships that would not be in-
cluded in standard multiple linear regression. Additionally, these nonlinear fits can potentially
generate predictions that are more accurate than those made by an analogous multiple linear re-
gression model. Finally, the additive nature of the model allows us to examine the partial effect
of each covariate on the response. While the description of generalized additive models above di-
rectly extends from multiple linear regression, we can apply GAM techniques to any generalized
linear model or hierarchical generalized linear model. Furthermore, we can restrict the applica-
tion of GAM techniques to any subset of covariates in our model.

2.2.8 Criteria for Model Comparison

Initially, we employed both the Bayesian Information Criterion (BIC) and Akaike Information
Criterion (AIC) for model selection among a set of candidate models. These criteria consider two
main components in their calculations: (1) the number of parameters or explanatory variables in
the model and (2) the quality of fit, measured using the likelihood approach [12]. However, we
later decided to use only BIC instead of AIC because BIC imposes a more substantial penalty
for the number of parameters, favoring simpler models more aggressively. Additionally, BIC is
asymptotically consistent, meaning it tends to select the true model as the sample size increases,
provided the true model is among the candidates. BIC balances the trade-off between goodness
of fit and model complexity by penalizing the addition of parameters to the model. A lower BIC
value indicates a better balance between these factors, leading us to select the model with the
lowest BIC value as the most appropriate [17].
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3 Results

3.1 Model comparison

Table 1 below illustrates the BIC values across all considered modeling approaches and all five
soccer leagues. One can see that Negative Binomial approach outperforms regular Poisson model,
while GAM does considerably better than linear approaches. That results in Negative Binomial
GAM being the best model across all five leagues. It involves the most amount of parameters
and represents the highest complexity out of all the models considered (trying to accommodate
both the overdispersion and non-linearity), but nonetheless provides such an improvement to the
quality of the fit that even the harsh penalty the BIC imposes on model complexity doesn’t drop
it down in the model hierarchy. This aspect bodes well for the model’s capability to generalize to
new data and avoid overfitting.

Linear GAM

Leagues
Distributions Poisson

Negative
Binomial

Poisson
Negative
Binomial

Bundesliga 115241.4 114067.0 114747.3 113704.7
La Liga 136271.8 134899.9 135648.0 134411.2
Ligue 1 130402.5 129032.6 129996.8 128706.0

Premier League 120879.4 117778.4 120346.4 117469.3
Serie A 142586.0 140536.6 142053.1 140139.2

Table 1: BIC values comparing all considered models across all leagues

3.2 Covariate Effect Estimates

Having determined Negative Binomial GAM as the best model, Tables 2 and 3 demonstrate the
statistical significance for each covariate of interest, while Figure 5 illustrates the nature of their
effects. In particular, Tables 2 and 3 shows that each numerical covariate (score differential, red
card differential, betting coefficients) had a statistically significant effect on shots and corners,
with score differential requiring the most ”effective degrees of freedom” (edf) - meaning that it
had the most non-linear nature out of the three. To confirm it, one could look at Figure 5, where
score differential exhibits much higher level of wiggliness compared to red cards and betting coef-
ficients. These results are quite consistent across all five leagues. For more detailed discussion of
the intuition behind the nature of the effects being observed, see Section 4.1.

Approximate significance of smooth terms

edf Chi.sq p-value Signif.

s(ScoreDiff) 7.820 1067.4 <2e-16 ***
s(RedCardDiff) 1.849 736.5 <2e-16 ***

s(WeightedWinProb) 5.161 3131.4 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 2: Significance of smooth terms in Negative Binomial GAM with shots as the response
variable, Bundesliga.
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Approximate significance of smooth terms

edf Chi.sq p-value Signif.

s(ScoreDiff) 6.902 839.4 <2e-16 ***
s(RedCardDiff) 1.906 242.5 <2e-16 ***

s(WeightedWinProb) 4.772 1613.0 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 3: Significance of smooth terms in Negative Binomial GAM with corners as the response
variable, Bundesliga.

Figure 5: Plots for effects of hypothesized ”prevent defense” covariates (score differential, red
card differential, weighted win probability) on shots and corners per minute, across five major
European soccer leagues.
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4 Discussion & Future Work

4.1 Discussion of Results

Having conducted an array of modeling techniques which were tailored to the count data we used
as response variables (number of shots and corners per minute), we found the Negative Binomial
GAM to perform better its Poisson and linear counterparts. Negative binomial allowed to ac-
count for the overdispersion in the data, while the smoothing splines turned out to be more ap-
propriate for the non-linear effect of the scoring differential (as could be seen on Figure ..). The
effects of red cards and betting coefficients, on the other hand, looked relatively linear and likely
could’ve been modeled via respective linear terms.

As for the nature of the effects, of utmost interest was the impact of score differential. Given
that large score differentials (e.g. ±3 and larger) aren’t as prevalent as the smaller ones, it isn’t
surprising to see the most narrow confidence bands in that −2-to-2 range, where the results are
to be trusted the most (as opposed to the large score differentials, where the estimates are the
least stable). Across all five leagues, and for both shots and corners, one can notice a clear nega-
tive trend in offensive production from a team that’s trailing in score (e.g. −2 or −1) compared
to team that’s leading (+1, +2). That confirms the hunch of leading teams being more likely to
implement the prevent defense strategy, while the trailing teams become more aggressive as they
try to catch up in score.

What’s also curious is the fact that the drop-off in production from a team that leads by 1 goal
(ScoreDiff = 1) as opposed to a team leading by 2 (ScoreDiff = 2) is rather negligible, com-
pared to incremental drop-offs observed all the way from −2 to 1. Given that a win is worth 3
points (2 more than a draw), whenever one goes up in the score - that lead becomes extremely
valuable to protect, regardless of how big it might be (e.g. be it 1 goal or 2 goals). That typi-
cally results in a binary (rather than incremental) switch in team’s mentality to start playing
a more careful, defensively responsible, style of soccer. Therefore, after the notable drop-off in
offensive output from a tied game to a team that leads by 1 goal, the offensive output doesn’t
change much between teams leading by 1 and 2 goals. If you’re the trailing team, on the other
hand, although you technically have no lead to protect in either case (whether you’re down 1 or 2
goals), typically teams don’t abandon defense instantly upon going down 1 goal so as to keep the
game within reach at least until the final minutes (when they could make their final push for a
draw). If the team goes down 2 goals though, they tend to start playing much more desperately
right away, strongly shifting towards offense while for the most part abandoning their defensive
responsibilities. Reason for that is because, at that point, game starts getting out of reach, and
the risk of allowing another goal (to go down 3 instead of 2) isn’t that much worse than the cur-
rent, already dire, situation. So the upside of potentially scoring a goal by increasing your offen-
sive output outweighs the downside of allowing another goal.

As for the effects of red cards and betting coefficients, their nature was quite intuitive. A team
with higher number of red cards, hence fewer men on the field, tends to produce less offensive
output than their opponent. A team that’s favored to win the game according to the bookmakers
typically outperforms their opponent on offense. Despite a slight non-linear bend in the GAM es-
timates of relationships between red cards and offense in some of the leagues, the aforementioned
effects looked rather linear for the vast majority of the settings. Therefore, unlike scoring differ-
ential, they likely could be modeled linearly, without the need to resort to smoothing splines.
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4.2 Limitations

One limitation of this work is the potential violation of independence assumption when conduct-
ing inference and model estimation. Each time period spent within a game at the same score and
red card differential results in two observations - one for home team and one for away team. We
treat those independently, although a strong argument can be made for dependence of offensive
outputs between two teams competing against one another for those outputs in the same game.
Methods to potentially address it will be discussed as part of future work.

4.3 Future Work

One approach to address the dependence issue is to introduce random effects to represent the
same game or same time period within the game, which is conveyed by hierarchical/mixed-modeling
approach [15]. Moreover, given that we could treat each time period as giving rise simultaneously
to multiple outputs (e.g. shots for home team, away team; corners for home, away team), multi-
variate regression approaches could be leveraged [10], with multivariate Poisson log-normal ap-
proach being more tailored toward count response data [6].

Moreover, given some of the ”switch” tendencies observed in team’s choices of playing tactics
based on score differential, we will attempt treating the score difference as a categorical predic-
tor. In addition, it could also allow us to conduct variable selection in determining the score dif-
ferentials at which there’s true deviations from typical offensive output during a tied game (so we
will treat score difference of ”0” as the reference category).

Another avenue would be to account for the exact minute in the game when the event (shot or
corner) occurred, rather than just accumulating the total across a time period. That could help
studying the tendencies in offensive outputs as the game nears the end, which could be different
based on the increased sense of urgency with the clock running out.

Most importantly, our final goal is to create a statistical metric, or adjustment, that provides a
more objective picture of teams’ performances in a game given the contextual information. As
opposed to treating each shot or corner equally, it would involve accounting for the score and
red card differential at which the offensive output was accumulated, therefore adjusting for the
prevent defense factor.

Lastly, with the current work mostly focusing on national club leagues, where there’s no concept
of playoffs or elimination games, and there’s clear point denomination for each outcome (3 points
for a win, 1 for a draw, 0 for a loss). A great extension would be to study the dynamics of other
competitions such as, for example, Football Association Challenge Cup (FA Cup), World Cup
or Champions League playoffs, where the format is notably different, with more reliance of score
differential - not points - as a way to determine who proceeds to the next round. It would be cu-
rious to investigate whether the nature of the covariate effects on the offensive outputs remain
unchanged, especially that of the scoring differential.
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